

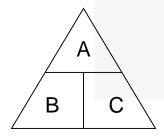
ECOLE D'APPLICATION DE SECURITE CIVILE

Version 2020

Physique appliquée à la plongée

Plongée

Plan du cours


- Notions de calcul
- Grandeurs physiques
- Unités
- Flottabilité
- Compressibilité
- Acoustique
- Optique
- Pression partielle
- Dissolution
- Modèle de Haldane

Notions de calcul

•
$$A + B = C$$
 $A ?$

$$\Leftrightarrow A + B - B = C - B \Leftrightarrow A = C - B$$

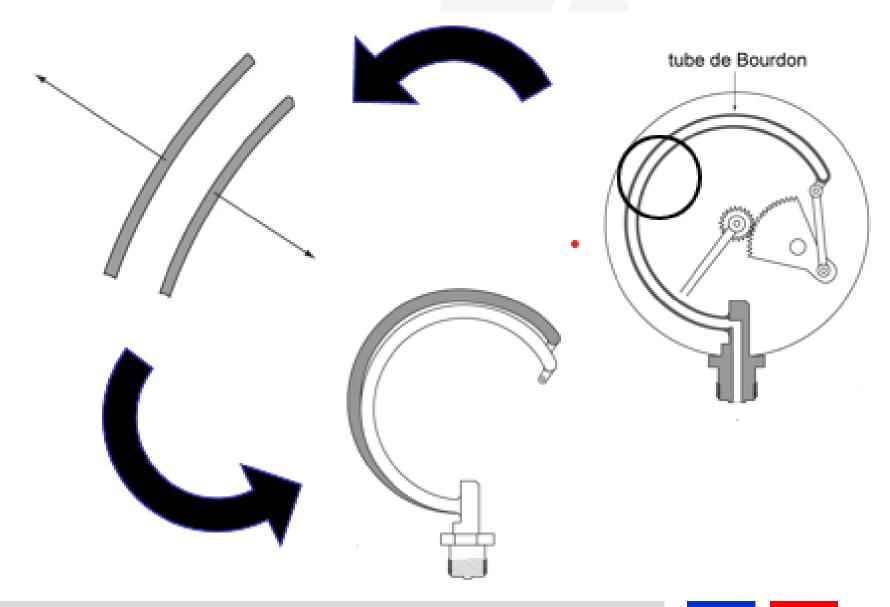
- $A \times B = C$ A ? $\Leftrightarrow A \times B / B = C / B \Leftrightarrow A = C / B$
- A / B = C A ? \Leftrightarrow (A / B) \times B = C \times B \Leftrightarrow A = C \times B = B \times C

$$A/B = C$$

 $A/C = B$
 $A = B \times C$

Grandeurs physiques (1)

- Force : intensité, direction, sens ⇒ \(\sigma\), s'exprime « officiellement » en newton (N)
- Poids : force verticale dirigée vers le bas, due à la pesanteur ⇒ ↓
- Masse : quantité de matière, s'exprime en kilogramme (kg)
- $P = M \times g$ $g = 9.81 \text{ m/s}^2$, approximé à 10 (à 2% près)
- ⇒ g étant pratiquement constant (à la surface de la terre), on s'autorise à assimiler les forces à des masses et à les exprimer en kg
- Masse volumique : $\rho = M / V$, s'exprime en kg/m³ $\Rightarrow M = \rho \times V$
- Densité : rapport de la masse volumique à celle de l'eau douce (sans unité) $\mathbf{d} = \rho / \rho_0$


Quelques densités...

	A	
Béton	2,4	
Granit	2,6	
Sable	1,6	
Fer, acier	7,8	
Fonte	7,0	
Mercure	13,5	
Or	19,3	
Plomb	11,3	
Huile d'olive	0,92	
Gasoil	0,85	
Essence	0,75	
Eau de mer	1,03	

Grandeurs physiques (2)

- Pression : p = F / S, s'exprime « officiellement » en pascal (Pa)
 ⇒ F = p x S (matériel)
 - Exemples : couteau de plongée, épine d'oursin, manomètre,...
- Pression atmosphérique : poids de la colonne d'air par unité de surface
- Pression hydrostatique (relative) : poids de la colonne d'eau par unité de surface
- \Rightarrow p = P / S = M x g / S = ρ x V x g / S = ρ x g x h = 10000 x h (Pa) = 0,1 x h (bar)
- À 10m en eau de mer, $p_{rel} = 1,01$ bar (1 + 1%)
- À 10m en eau douce, p_{rel} = 0,98 bar (1 2%)
- Pression Absolue : Pression atmosphérique + Pression hydrostatique

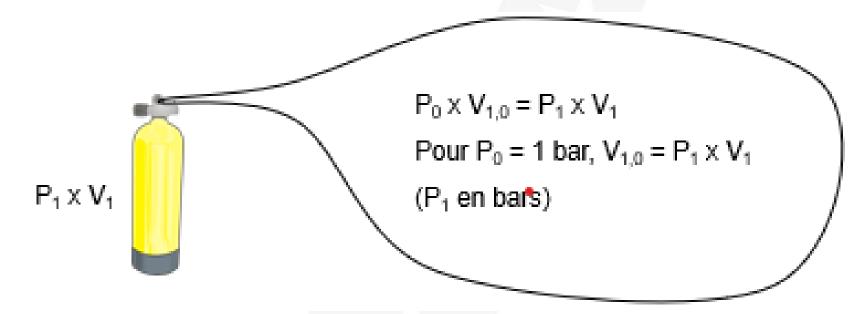
Exemple : Le manomètre

Unités usuelles

Volume

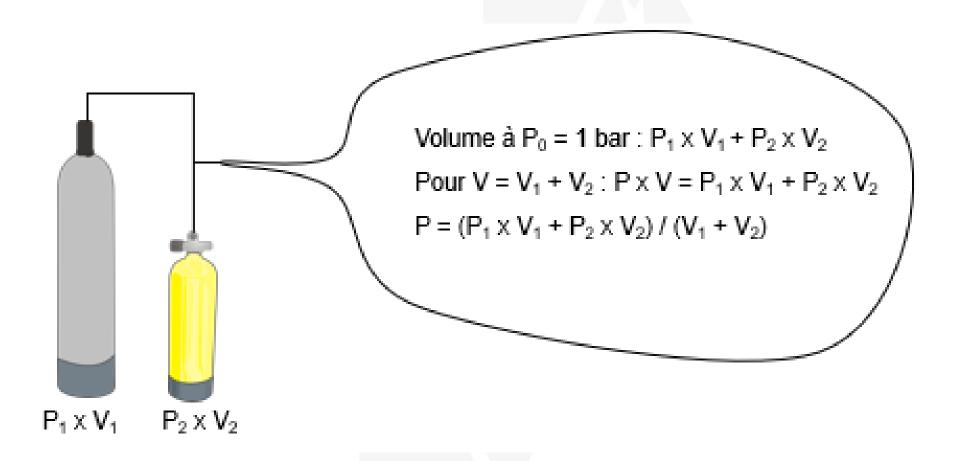
- $-1 \text{ m}^3 = 1000 \text{ L}$
- $-1L = 1000 \text{ cm}^3 = 1 \text{ dm}^3$

Force


 $-1 \text{ kgf} = 9.81 \text{ N} \rightarrow \text{par soucis de simplification, on utilise le kg}$

Pression

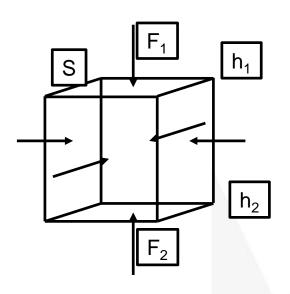
- 1 bar = 100000 Pa
- 1 mbar = 100 Pa = 1 hPa
- 1 atm = 1013 hPa = 1,013 bar = 760 mmHg
- $1 \text{ kg/cm}^2 = 0.981 \text{ bar}$
- 1 bar = 14,5 PSI \Rightarrow 200 bar ≈ 3000 PSI
- Règles d'écriture des unités <a>


Compressibilité : Boyle - Mariotte

- $P \times V = C^{te}$
- Valide si P < 250 bar et T < 220°C

- À température constante, P x V représente une quantité (masse, nombre de molécules) de gaz
- Applications : consommation, autonomie, parachute, gonflage par transfert

Compressibilité : Boyle – Mariotte (suite)



Applications : équilibrage de blocs

Compressibilité : Charles

- Influence de la température absolue
- La température absolue est exprimée en Kelvin (K)
- $T(K) = T(^{\circ}C) + 273,15$ (on arrondit à 273)
- A volume constant, P / T est constant
- $P_1 / T_1 = P_2 / T_2$
- Applications : variation de température des blocs gonflés

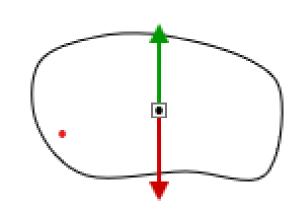
Flottabilité

•
$$F_1 = p_1 \times S \text{ et } F_2 = p_2 \times S$$

$$\Rightarrow$$
 F = $(p_2 - p_1) \times S (\uparrow)$

•
$$p = \rho x g x h$$

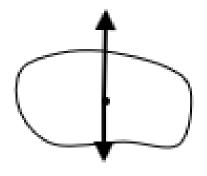
$$\Rightarrow$$
 (p₂ - p₁) = ρ x g x (h₂ - h₁)

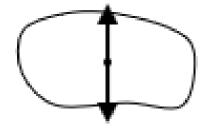

$$\Rightarrow$$
 F = ρ x g x (h₂ - h₁) x S

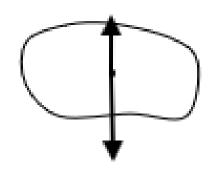
 \Rightarrow F = ρ x g x V = M x g = P (poids du volume d'eau)

« Tout corps plongé dans un fluide subit de la part de celui-ci une poussée verticale dirigée de bas en haut, d'intensité égale au poids du fluide déplacé »

poids apparent = poids réel – poussée d'Archimède


Flottabilité (1)

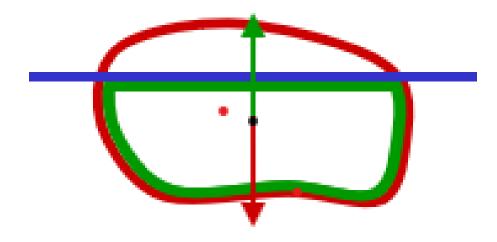



« Tout corps plongé dans un fluide subit de la part de celui-ci une poussée verticale dirigée de bas en haut, d'intensité égale au poids du fluide déplacé »

poids apparent = poids réel – poussée d'Archimède

Flottabilité (2)

Papp < 0 Flottabilité positive Papp = 0 Flottabilité neutre Papp > 0 Flottabilité négative


Méthodologie de calcul

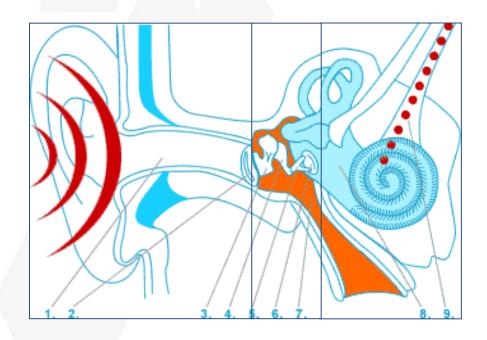
$$P_{r\acute{e}el}$$
 (kg) = d_{objet} x 1 (kg/L) x V_{objet} (L)

$$P_{Arch}$$
 (kg) = d_{eau} x 1 (kg/L) x $V_{objet\ immerg\acute{e}}$ (L)

$$P_{app}$$
 (kg) = $P_{réel}$ (kg) - P_{Arch} (kg)

Flottabilité (3)

A l'équilibre, le poids du liquide déplacé est égal au poids de l'objet


Flottabilité : applications

- Lestage
- Utilisation du SSG
- PMTC
- Recherches
- Relevage d'objets immergés
- Équilibrage d'objets immergés
- Équilibre d'objets en surface
- Densité de l'eau de mer = 1,03
- Densité du plomb = 11,3

Fonctions de l'oreille : audition

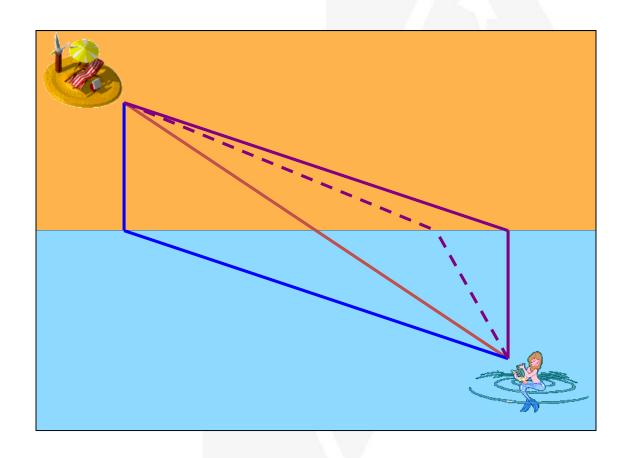
- Vibration du milieu sur le tympan
- Transmission à la fenêtre ovale via la chaîne marteau-enclume-étrier
- Vibration du liquide cochléaire transmise au cerveau via le nerf cochléaire
- Évacuation de l'onde de pression cochléaire dans l'oreille moyenne via la fenêtre ronde

Audition subaquatique

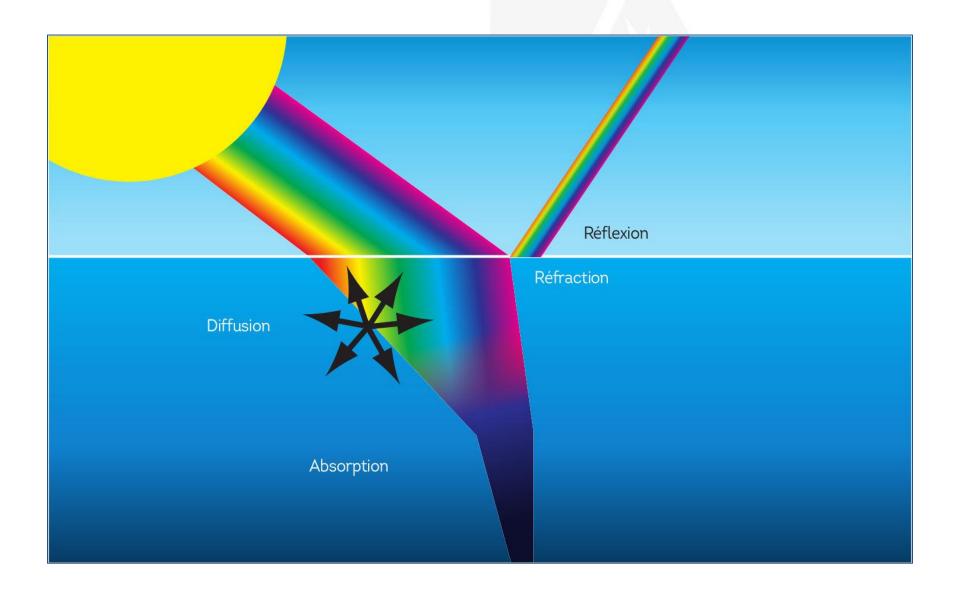
• Vitesse du son dans l'air : 330 m/s

• Vitesse du son dans l'eau : 1450 m/s

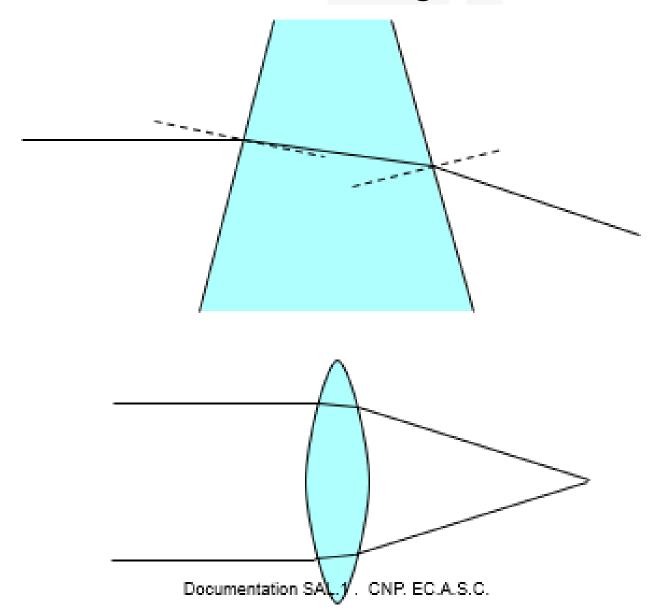
•
$$v = d / t \Leftrightarrow d = v \times t$$

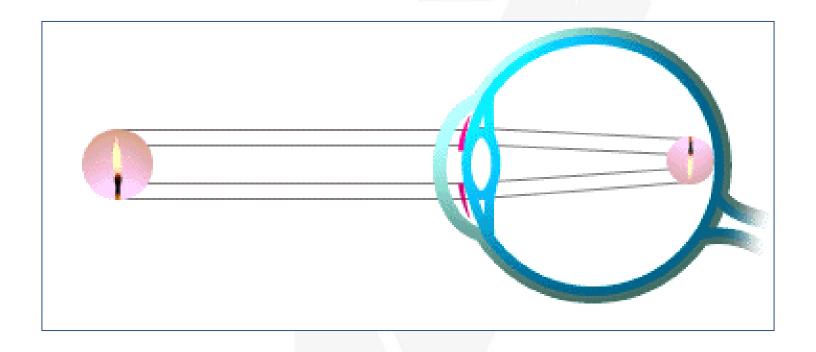

•
$$\lambda = v \times T = v / F$$

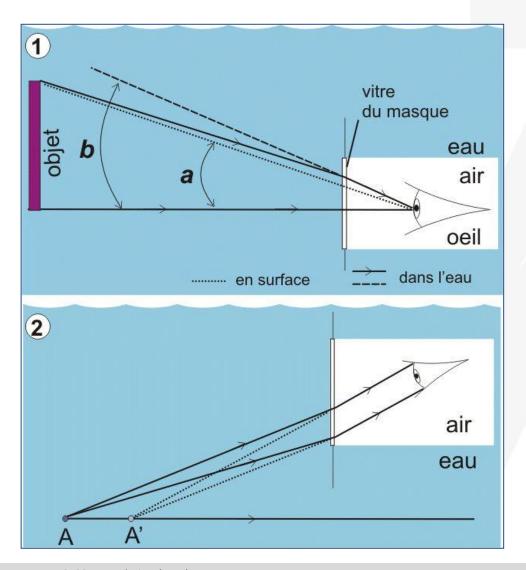
		V = 330 m/s	V = 1500 m/s
Graves	F = 20 Hz	λ = 16,5 m	λ = 75 m
Aigus	F = 20000 Hz	λ = 1,65 cm	$\lambda = 7,5 \text{ cm}$


Stéréophonie :

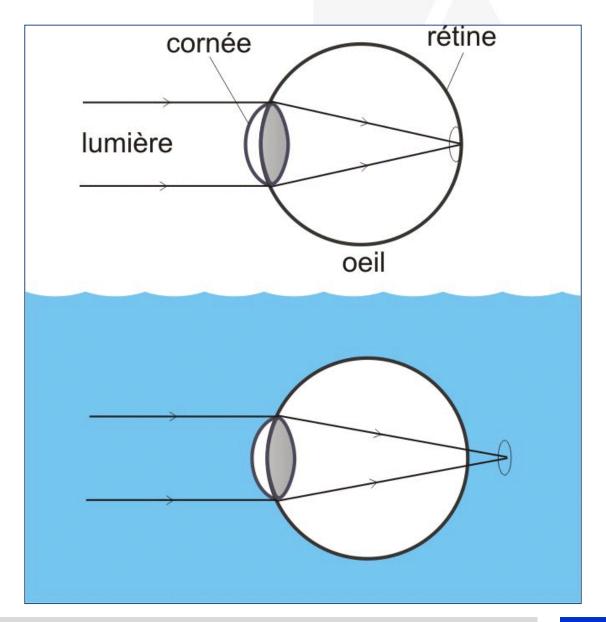
- Les 2 oreilles ne sont pas à la même distance de la source
- Le cerveau analyse le déphasage entre les 2 oreilles et détermine la direction de la source
- Si la vitesse du son augmente, le déphasage diminue et devient imperceptible pour le cerveau ⇒ perte de la stéréophonie
- Transmission osseuse du son aux 2 OI par la boîte crânienne
- Le cerveau humain est adapté à une audition stéréophonique aérienne, pas à audition stéréophonique subaquatique !!!


Changement de milieu : la réfraction

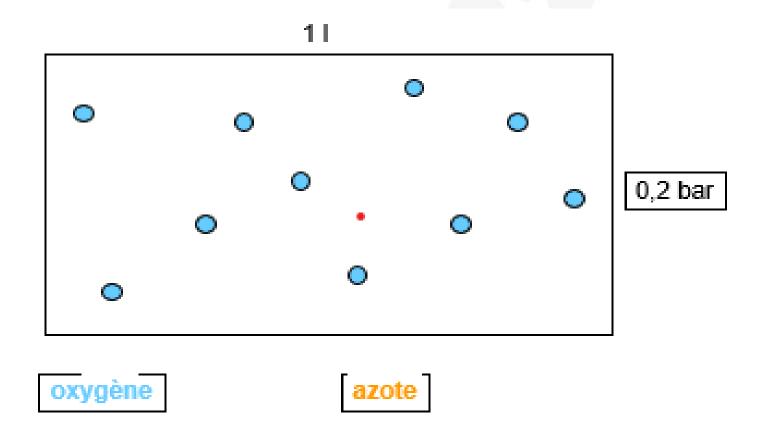

La lumière dans l'eau


Lentille convergente

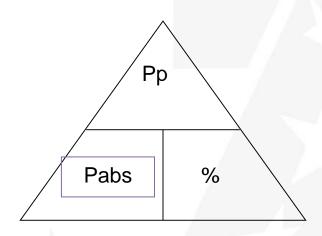
La vision


Vision subaquatique : modification des perceptions

- Grossissement
- Rétrécissement du champ de vision
- Rapprochement


⇒ Guide de palanquée

Vision subaquatique : hypermétropie

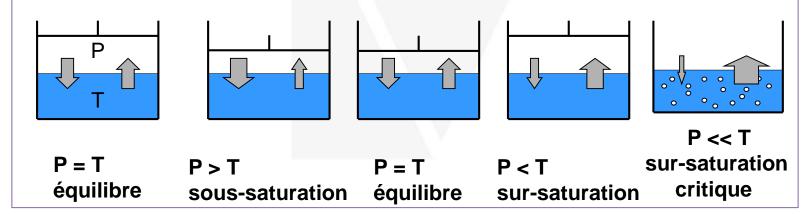


Notion de pression partielle

Dans un mélange de gaz, chaque constituant se comporte comme s'il occupait seul le volume disponible.

Notion de pression partielle (suite)

- Pp = Pabs x %
- Pabs = Pp / %
- % = Pp / Pabs
- Pp1 + Pp2 + ... + Ppn = Pabs


⇒ C'est la pression partielle des gaz dans l'organisme qui va déterminer leur effet sur celui-ci

La dissolution des gaz

- Pression du gaz sur le liquide → dissolution
- 4 états : sous-saturation, équilibre, sur-saturation, sur-saturation critique
- À l'équilibre, par définition :

tension (gaz dissous) = pression (gaz gazeux)

- Solubilité (fonction de la température)
- A l'équilibre, la quantité de gaz dissous est proportionnelle à sa solubilité dans le liquide et à sa tension

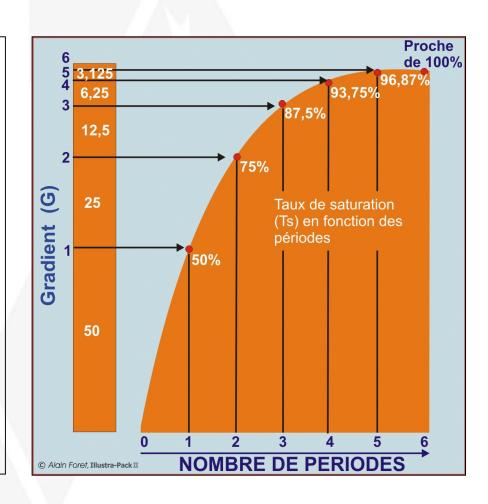
Les facteurs qui influencent la dissolution

- Pression du gaz (*Profondeur*): pression ¬ ⇒ gaz dissous ¬
- Durée d'exposition (Temps d'immersion) : durée

 ⇒ gaz dissous
- Température (≈37°C): température ¬ ⇒ gaz dissous
- Nature du gaz et du liquide (taille des molécules, affinité, solubilité): Tissus (sang, lymphe,...), mélange gazeux respiré
- Agitation : agitation → vitesse de dissolution →
 (Débit sanguin)

Modèle de décompression

Notion de modèle :


- Représentation simplifiée de la réalité
- Hypothèses
- Calibration
- Validation expérimentale
- Simulation

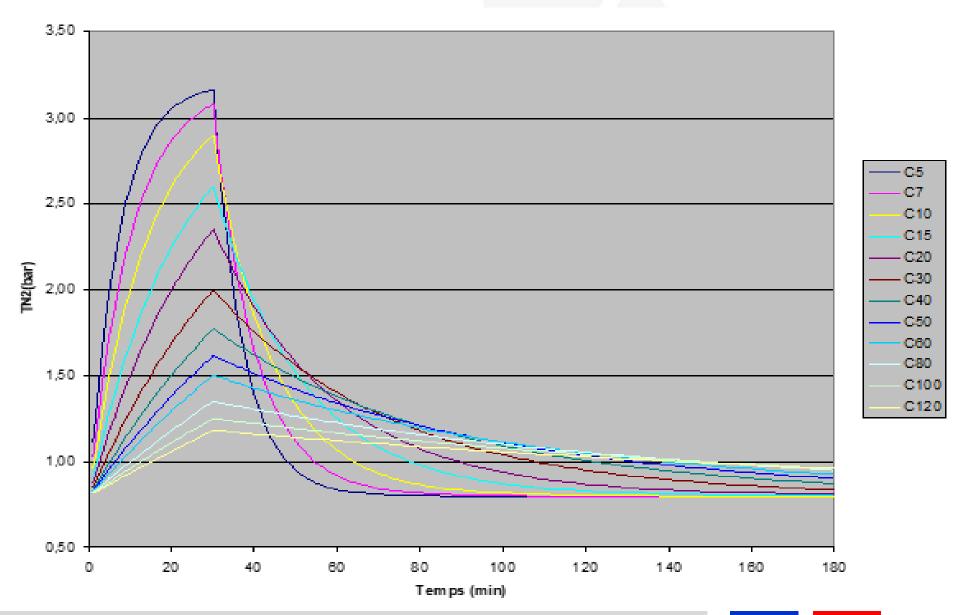
Modèle de Haldane :

- 5 hypothèses :
 - Équilibre alvéolaire instantané
 - Équilibre tissulaire instantané
 - Tissus anatomiques représentés par des compartiments
 - Taux de perfusion constant
 - Charge et décharge symétriques
- Tout le gaz est dissout, les bulles sont pathogènes (Sc)
- Perfusion limitante (débit d'irrigation, solubilité)

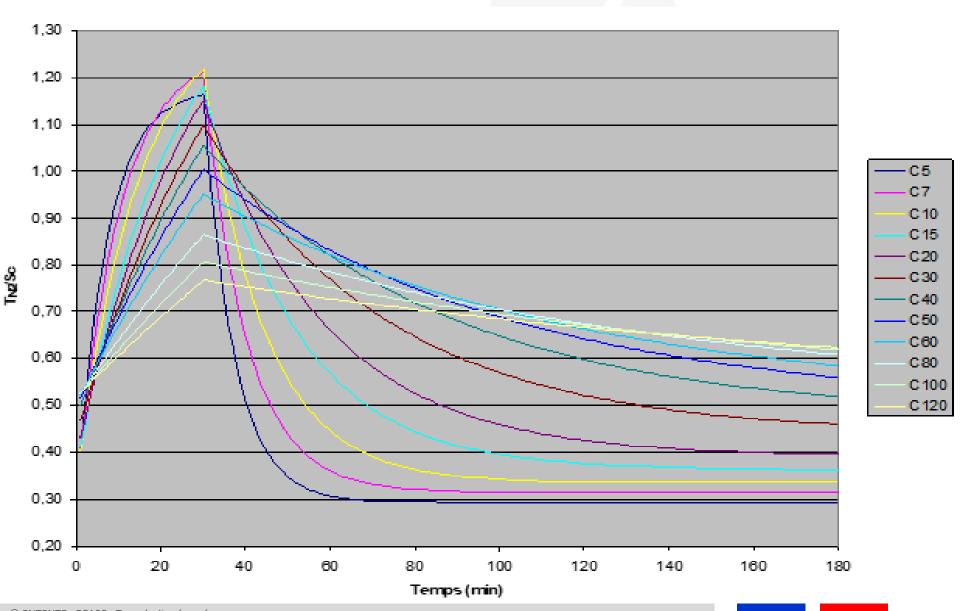
Que nous dit le modèle de Haldane?

- Les différents tissus de l'organisme sont représentés par des compartiments
- Chaque compartiment est caractérisé par sa période (en min) significative de sa perfusion, donc de sa vitesse de charge et de décharge
- En 1 période, le compartiment échange la moitié du gradient
- G = pression partielle tension
- Volume critique des bulles tissulaires :
 TN₂ / Pabs ≤ Sc ⇔ Pabs ≥ TN₂ / Sc
 ⇒ détermine les paliers

Méthodologie de calcul

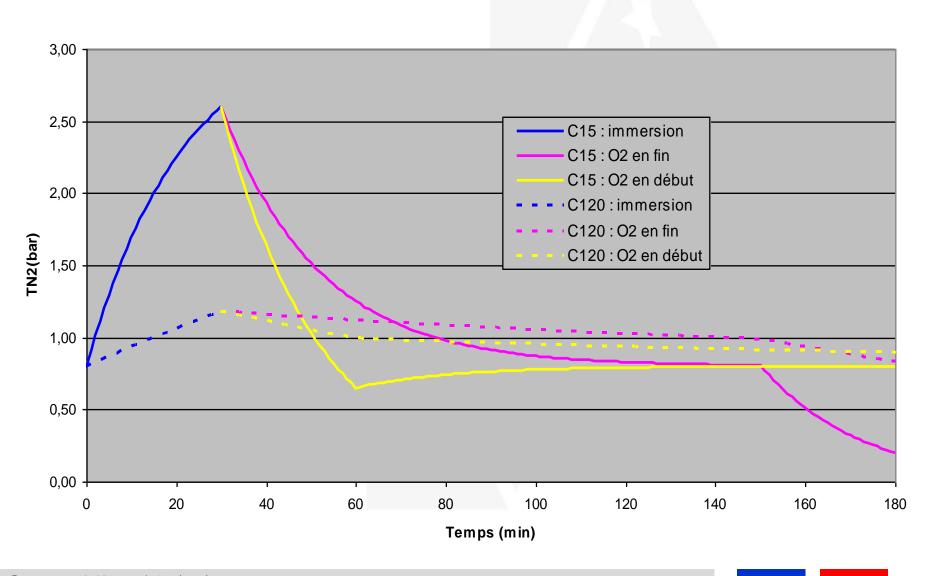

- Tension initiale (Ti)
- Pression partielle d'azote respirée = PpN2 resp
- Gradient (G)
- Nombre de périodes
- Pourcentage de saturation (%sat)
- Tension finale (Tf)

$$G = PpN2 resp - Ti$$


Nb	1	2	3	4
%	50%	75%	87,5%	93,75%

Tf = Ti +
$$%$$
sat x G

Compartiment directeur (ex: 30min à 30m)


Compartiment directeur (ex: 30min à 30m)

Limites du modèle de Haldane

- Présence de micro-bulles circulantes à la décharge (gaz gazeux)
- Décharge plus lente que la charge du fait des micro-bulles (⇒ modèle sigmoïde, modèle à décharge linéaire)
- Équilibre alvéolaire ralenti en cas d'engorgement du filtre pulmonaire
- Équilibre tissulaire non instantané dans les tissus lents (cartilages articulaires)
- Taux de perfusion variable à effort (augmentation de la température et de la perfusion)
- Composition du gaz alvéolaire différente de celle du gaz respiré (H₂O et CO₂ indépendants de la pression)
- ⇒Variété et nouveauté des modèles : Buhlmann, VPM (paliers profonds), RGBM, M-values (seuil N₂ variable avec la profondeur), Hempleman (diffusion limitante),...

Utilisation d'O² pur

Question?...

ENTENTE-ECASC ETABLISSEMENT PUBLIC www.valabre.com